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Pressure fluctuations in a randomly permeable medium 

I T Drummond and R R Horgan 
Department of Applied Mathematics and Theoretical Physics, Silver Street, Cambridge 
University, Cambridge CB3 9EW, UK 

Received 27 February 1989 

Abstract. We extend a diffusion simulation method to compute pressure fluctuation correla- 
tions for a fluid flowing in a randomly permeable medium. 

1. Introduction 

In a previous paper (Drummond and Horgan 1987) we studied the problem of 
computing the effective permeability for large-scale flows in a medium in which the 
local permeability fluctuates according to a known (or assumed) statistical distribution. 
Here we show that the same methods may be applied to the computation of correlations 
of fluctuations in the pressure about a constant average gradient. Pressure fluctuation 
correlations are of great practical interest since they reflect statistical properties of the 
structure of the medium. They may also provide information relevant to the thermo- 
dynamic history of the fluid flowing in the medium. 

2. Diffusion method 

The diffusion method which we used previously to compute the effective permeability 
of the random medium can be adapted to the computation of the pressure fluctuations. 
We will assume that a sample of the random medium is represented by a symmetric 
permeability tensor field K , ~ ( x ) .  The velocity u,(x) of fluid flowing in the medium is 
related to the pressure distribution P ( x ) ,  by a local form of Darcy's law 

u ~ ( x )  = - - ~ r j ( ~ ) a j J ' ( ~ ) *  (2.1) 

d , K , , ( X ) d , P ( X )  = 0. (2.2) 

The flow is incompressible so the pressure satisfies the equation 

In circumstances where there is a constant average pressure gradient g the pressure 
distribution is given by 

(2.3) P( x) = g - x + p (  x) 

where p ( x ) ,  on average, is zero. From (2.2) we find that 

d , K ~ ( X ) a j p ( X )  = - a , K y ( x ) g j .  (2.4) 
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The Green function for the medium, which vanishes for large values of its arguments, 
satisfies 

a j ~ i j ( ~ ) G ( ~ ,  x‘) = -S(x-x‘) .  (2.5) 

It then follows from (2.4) that 

P(X) = Rj(x)gj 

where 

R , ( x )  = d3x’G(x, x ’ ) ~ : K , , ( x ’ ) .  I 
(2.6) 

(2.7) 

The vector field Rj (x ) ,  therefore, allows us to compute the pressure fluctuations by 
simply obtaining its projection along the direction of the pressure gradient. 

As pointed out in our previous paper (Drummond and Horgan 1987), the above 
flow problem can be associated with a diffusion problem specified by the equation 

(2.8) 
a 

a7 
aiKV(x)ajP(x,  T )  =- P ( x ,  T )  

where now we can think of P ( x ,  T )  as a probability density. (Of course, T is an artificial 
time variable.) The connection between the two problems is made precise by introduc- 
ing F ( x ,  x’, T )  as that solution of (2.8) which satisfies the boundary condition 

F(x,x’ ,O)=6(x-x’ ) .  (2.9) 

The Green function for the flow problem can be expressed as 

G(x, x’) = Iox dTF(x,  x ’ T ) .  (2.10) 

Note that because of the symmetry of the permeability tensor both G(x,x‘) and 
F(x ,  x’, T )  are symmetric in their spatial arguments. 

The connection between the two problems can be exploited to interpret R , ( x )  in 
terms of the diffusion problem. Consider a small (point-like) cloud of particles released 
at position x at T = 0, which then diffuses according to (2.10). Denote by R,(x, T )  the 
displacement of the centre of mass of the cloud at time T. We will show that 

(2.11) R , ( x )  = lim Rj(x, 7). 
7- X 

From its definition 

d 3 ~ ’ ( ~ ’ - ~ ) j F ( ~ ‘ ,  x, 7). 

Using the relation 

together with the fact that F ( x ’ ,  x, T )  satisfies (2.8) (with x-* x‘) we find that 
r .  r 

(2.12) 

(2.13) 
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Integrating by parts, we obtain the results 

Rj(x ,  T )  = [: d7’ [ d3x‘F(x’, x, T ’ ) ~ ; K ~ ( x ’ ) .  

Now using (2.10) we see that (2.1 1) follows immediately. 
The pressure fluctuation correlation function is defined as 

(2.15) 

H ( x  - x’) = ( P ( X ) P ( X ”  (2.16) 

where the angular brackets indicate an average taken over the ensemble representing 
the medium. We find, using the isotropy of the medium, that 

H ( x - x ‘ )  = i g 2 ( R ( x )  * R ( x ’ ) ) .  (2.17) 

The diffusion method for computing H(x-x’ )  then amounts to releasing clouds of 
particles at various points in the medium, measuring the vector field R ( x )  at these 
points, forming the appropriate scalar products and then averaging over different 
realisations of the medium. 

3. Model random medium 

We test the idea of the previous section on a model random medium of a type considered 
previously (Drummond and Horgan 1987). For simplicity we assume local isotropy 
for the medium, i.e. 

K&) = &,K(X). (3.1) 

K ( X )  = K~ exp(AQ(x)) (3.2) 

We further assume (log-normal statistics) that K ( X )  has the form 

where 4 ( x )  is a Gaussian random field with zero mean and unit variance. Prescribing 
the two-point correlation function for 4 ( x )  completes the model. We define 

A ( x - x ’ )  = ( 4 ( ~ ) 4 ( ~ ‘ ) )  (3.3) 

A(0)  = 1. (3.4) 

so 

The parameter to K~ sets the scale for the permeability while A controls the magnitude 
of relative fluctuations. The mean permeability is 

K ,  = K~ exp($A2). (3.5) 
The assumption of homogeneity and isotropy for the statistical properties of the medium 
implies that the correlation function A depends only on / x  -x’l. 

Our method of constructing $(x) for the purposes of simulation is the same as 
previously explained (Drummond and Horgan 1987). We set 

where the {E,} and the { k , }  are independent random variables; E ,  is a uniformly 
distributed random phase and each k, is selected from a probability distribution D(k)  
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which is essentially the former transform of A(x). For simplicity of simulation (and 
to make a point), we restrict ourselves in this paper to the case 

D ( k ) a S ( k -  ko). (3.7) 

A(x) = sin ko(lxl)lko(lxl) (3.8) 

This leads to the result 

so k,’ is a correlation length for the permeability fluctuations in the medium. The 
number of modes, N, does not affect the form of A(x). It need only be sufficiently 
large to ensure that the statistics of +(x) is reasonably Gaussian. For our present 
purposes of demonstrating our method we do not have to be too strict about this. We 
found that N = 8 was adequate and computationally convenient. 

4. Perturbation-theory calculation 

In a given sample of the medium, the results for Rj(x) and Rj(x, 7) can be computed 
as a perturbation series in A, i.e. in the fluctuations of the permeability. Even the 
lowest-order results are interesting since they give some feeling for the relationship 
between the fluctuation correlations H ( x - x ’ )  and the structure of the medium as 
represented by A(x - x‘). 

The lowest approximation to F ( x ,  x’, 7) is 

i.e. 

exp[iq - (x-x’ )  - K ~ T ~ ~ ] .  (4.2) 

From equation (2.16) we may infer that, in our model, the lowest approximation to 
Rj(x ,  7) is 

Rj(x, T )  = A K ~  1; dTr [ d3x’Fo(x, x’, T ’ ) ~ ; + ( x ’ ) .  (4.3) 

Using (4.2) we find 

(4.4) 

where J (q)  is the Fourier transform of +(XI. Taking the limit r+m, we see that 

Note that this result is independent of the overall scale K ~ ,  of the permeability. 
When +(x) is given by (3.5), we find 

For our particular model in which lknl = ko for all n, we can easily see from (4.4) 

Rj(x, 7) = [ 1  -exp(-~,ki.r)]R~(x).  (4.7) 
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That is, in our simple single-scale model, in lowest-order perturbation theory, Rj(x ,  T )  

deviates from its asymptotic value by an exponentially decreasing amount. We can 
expect R j ( x ,  T )  to be a good approximation to its asymptotic value when 

KOkiT 3 6.0. (4.8) 

This result has the following interpretation. The dispersion of the diffusing cloud is, 
in our approximation, 6 ~ 0 ~ .  Equation (4.8) implies then that Rj(x ,  T )  is a good 
approximation to R j ( x )  when the size of the cloud is roughly six correlation lengths 
in size. This is intuitively plausible and is likely to hold true beyond lowest-order 
perturbation theory. It implies that the longer the length scale of the structures in the 
medium, the longer it is necessary to diffuse in order to detect them. 

The corresponding low-order approximation for the pressure fluctuation correlation 
function is 

H (x - x’) = )g2A *KO d3x”Go( x - x”) A( X” - x’) . (4.9) 

Where 

1 
Go( x - x”) = (4.10) 

4TKo/X - X”l ’ 

For the single-scale model presently under consideration, this is easily evaluated to yield 

1 sin kolx - x’/ 
kolx - x’/ . H(x-x’ )=fg2A2 (2) (4.11) 

Actually the single-scale model is a little misleading since it rigorously excludes 
wavevectors k, = 0. In general these will be present. Their strength is measured by 

A( k )  = d3x exp( -ik x)A(x) (4.12) 

for k = 0 .  They give rise to a long-range component in the pressure fluctuation 
correlations. From (4.9) we see that 

1 
g2A2 i ( 0 )  

H ( x - x ’ ) - -  - 
127T /x -x ’  

(4.13) 

for large values of /x  - x‘l. 
Again a long-range effect of this kind is presumably true beyond low-order perturba- 

tion theory and may be important in understanding some of the effects of pressure 
fluctuations. 

5. Diffusion simulation 

In our model the diffusion equation (2.8) simplifies to 

dP 
C3.T 
- = v  . ( K ( X ) V P ) .  (5.1) 
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The probability distribution P (  x, 7 )  which satisfies this equation describes the statistical 
properties of a cloud of particles each of which moves according to the stochastic 
differential equation (in discrete approximation) 

A X = V K ( X ) A T + ~  7 (5.2) 
where AT is the small discrete time step and the components of 7 are independent 
random variables with zero mean and unit variance. 

We study the diffusion of particles in two stages. First we investigate the mean 
displacement of a cloud of particles, diffusing according to (5.2), and released from 
a particular point in a specific example of the random medium. A typical component 
of R(x,  T )  is shown in figure 1, plotted as a function of T. For A s 0.5 the results of 
the simulation, shown as dots, are clearly consistent with the predictions of low-order 
perturbation theory obtained by evaluating (4.6) for the particular sample of the 
medium, which are shown as curves. For A > 0.5, lowest-order perturbation theory is 
no longer accurate but the general nature of the results does not change dramatically. 
In figure 2 we plot the corresponding component of R ( x ) ,  against a range of values 
of A. Again we see that predictions of low-order perturbation theory are very accurate 
for A S 0.5. To obtain the statistical accuracy of these results it was necessary to follow 
the paths of 48 000 particles. 
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Figure 1. A component of the mean displacement of a cloud of particles released from a 
point in a particular medium shown as a function of T. The predictions of first-order 
perturbation theory are shown as curves. The results of the simulation are shown as dots 
with error bars indicated on the last dot. Case ( a )  A =0.5; case ( b )  A = 1.0. 

In  the second part of the investigation we released clouds of particles at various 
separations within the medium, measured R ( x )  at each position x, formed the scalar 
products R ( x )  9 R ( x ' )  for various pairs of points x and x', as required by (2.17), and 
finally formed the average over a number of samples of the medium. 

The results of the simulation for H ( x - x ' )  are compared with the prediction of 
lowest-order perturbation theory (4.11) in  figure 3.  Clearly simulation and theory are 
in excellent agreement. The statistical accuracy of these results required us to use 
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h 

Figure 2. The limiting value of a component of the mean displacement of a cloud of 
particles in a particular medium as a function of A. The straight line is the prediction of 
first-order perturbation theory. 

r 

Figure 3. The pressure fluctuation correlation function for A =0.5 as a function of the 
separation. The curve is the prediction of first-order perturbation theory and the dots with 
error bars are the results of the simulation. 

clouds of roughly 400 particles and 200 samples of the medium. There is a trade-off 
between the averaging over the particles in a cloud and  averaging over samples of the 
random medium. The calculations were performed on a Convex C1 computer. 

6. Conclusions 

We have shown how the diffusion method may be used for simulating the pressure 
fluctuations present in steady flow through a random medium. The simulation worked 
well in our single-scale model and  reproduced the predictions of perturbation theory 
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for a reasonable range of permeability fluctuations. This gives us good grounds for 
believing that the simulation method can be used to evaluate other more complicated 
models and to explore situations where perturbation theory is not applicable. 

An obvious direction for further investigation is that of multi-scale models, in 
particular those with long-range structure in the permeability distributions. A par- 
ticularly interesting example of this is one where the permeability correlation function 
has an inverse power-law behaviour at large separations 

1 
A(x)  - - 

1x1” 

for some constant n. Such behaviour may well lead to a breakdown of Darcy’s law 
for global flow. In the diffusion approach this would show as anomalous diffusion. 

Other models which merit detailed study are those in which isotropy breaks down 
at the local or global level. We believe this method can be usefully applied in these 
circumstances. 

It is also possible to use the method to investigate the velocity field of the flow as 
well as the pressure field. This is important for studying the dispersion of material 
carried in the flow. To obtain information on the velocity field it is necessary to 
compute not only the displacement field R j ( x )  which determines the pressure fluctu- 
ations but also its derivatives Rj ,k (x ) .  An accurate simulation can be achieved by 
regarding Rj,k as a strain matrix and computing it in terms of a triad of unit vectors 
carried by each particle in the diffusion process. This is similar to calculations already 
performed by the authors for turbulent diffusion of magnetic fields (Drummond and 
Horgan 1986). 

We feel then that our simulation approach, given sufficient computing power, 
should prove to be a useful way of analysing the properties of flow in random materials. 
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